
Sampling Algorithms for DrumGizmo

André Nusser Bent Bisballe Nyeng

July 21, 2019

Abstract

This paper suggests new sampling algorithms for DrumGizmo. First
the requirements and certain problematic special cases are formulated
and then several approaches are explored and turned into sample se-
lection algorithms.

1 Introduction

Introduce DrumGizmo. Sample selection is one of the core parts of Drum-
Gizmo as it heavily influences how “robotic” DrumGizmo sounds. What is
sample selection (only consider it for one instrument)?

1.1 Terminology

Sample: One hit on the instrument.

Power: Every sample has a certain power which is given by its audio signal
. how exactly is it

currently mea-
sured?1.2 Power Value Calculation in DrumGizmo

The power value calculation of DrumGizmo works as follows. Each sample
offset is detected by setting a value threshold. If a sample above this threshold
is detected the algorithm goes backwards until it finds the first zero-crossing
and this point is used as the sample offset.

1



The power, which is just the power of a signal, is regularly calculated via
sum of squares and the length of it is defined by the “attack length” which is
in samples (note to self, make this ms instead; also, see samplesorter.cc:96).

The power is then “spread out” by raising the value to the power of
“spread”, i.e.:

power = sum of squares in the attack range

stored sample energy = powerspread

In the code this is done in samplesorter.cc:99. We should prob-
ably store the
original power
and attack
length in the
xml and perform
the spread cal-
culation in the
engine instead
of storing the
spread-applied
value in the xml.

The attack is the same across all samples within an instrument so the
energies can be compared.

1.3 Sample Distribution in DrumGizmo Kits

1.4 Current Algorithm of DrumGizmo

The current sample selection algorithm of DrumGizmo works as follows. The
engine gets a value l ∈ [0, 1] which gives the strength of the sample to be
triggered. The power values of a drum kit are floating point numbers without
any restriction. Then the value l is mapped using the canonical bijections

do they have to
be positive?

between [0, 1] and [pmin, pmax] and afterwards shifted. We call this new value

by which
amount?

p.
Now the real sample selection algorithm starts. We select a value p′ drawn

uniformly at random from N (p′, σ2), where σ is a parameter specified by the
user. Now we simply find the sample s with the power q which is closest

Actually, it is
not. It is a value
specified by the
user multiplied
with the power
range divided by
the number of
samples.

to p′ – ties are broken such that the first minimal value is chosen (which is
problematic as explained below). In case s is equal to the last sample that
we played we repeat this process, otherwise we return s. If we did not find
another sample than the last played after 4 iterations, we just return the last
played sample.

1.5 Drawbacks

I will list a number of drawbacks of this algorithm in the following. These
will be an inspiration for the requirements that are formulated later.

2



Equal Powers. In case certain samples have the same power value. Always
the first of them in the list of samples is chosen because of the way we break
ties. This is obviously wrong and samples should instead be chosen either in
a random way or, probably better, in a round robin way.

Middle Samples. Consider the case where there are 3 samples which al-
most have the same power value, and especially consider the sample which
has the power value in the middle. This sample has a very low probability of
being chosen by the current algorithm as it always chooses the closest sample.
However, the range for which this sample is the closest sample is very small.
Thus, an improved algorithm has to be robust to such small perturbations
of power values.

Unequal Probabilities. More generally, we want that samples which are
close, should have a similar probability of being chosen by the sampling
algorithm (summed over all possible values of l).

History of Size One. Currently, we only remember the last sample that
was played. This seriously limits us to select samples well. Imagine that
there are several samples of similar power. We currently rely on the normal
distribution solving this, even though using round robin like sampling would
result in more diverse samples being chosen while not deviating significantly
more from l.

1.6 Related Work

Velocity Layers. Round Robin and Random Selection. Is there actually any
academic related work? What is actually the mathematical problem that we
are trying to solve?

2 Requirements

Normal Distribution. The samples should roughly be drawn from a nor-
mal distribution.

Avoid Same Samples. When we have multiple samples to choose from
we should always take one which was last played far enough in the past.

3



Randomization. To avoid patterns (like e.g. in round robin), we want
some form of randomization.

Equal Probability. Locally, samples should have almost the same proba-
bility of being chosen.

3 Suggested Algorithms

3.1 Resampling

Resample from normal distribution until we find a fitting sample. This seems
rather wasteful.

3.2 Objective Function

Define an objective function which depends on the history of samples and the
current power requested – or better, a power which comes from the normal
distribution of the power requested. The sample that we choose is then the
one which minimizes this objective function. This is a nice way to balance
the two contradictory requirements of sampling by normal distribution and
avoiding samples that were just played.

The rough algorithm should go as follows. A sample with power l is
requested. We draw one sample from the normal distribution around l and
call it p. Let tq be the time at which q was played last (the unit does not
matter as it is parametrized by β anyway), and let r(q, t) be a random number
generator uniformly producing numbers in the range [0, 1]. At the current
time t, we now want to find the sample q minimizing the objective function

f(q, t) := α · (p− q)2 + β · (tq − t)−2 + γ · r(q, t).

We have to ensure that tq 6= t to avoid division by zero.

4 Implementation Details

Instead of iterating over all samples and computing the objective function,
we can simply do a binary search for the value closest to the requested power
and then search down and upwards until we can be sure that there cannot

4



be any better value. This is the case as soon as the first summand exceeds
the best found value.

5 Experiments

5.1 Methods of Evaluation

• mean squared error to straight line from min power to max power

• histogram of distance to closest next same sample (to check that diverse
samples are selected; picture!). Or maybe some other measurement, not
sure.

• Histogram of how often samples were played. This should be a uniforum
distribution (at least locally). Globally it might diverge from that as
the sampling is worse for some powers.

• mean square error to gaussian curve (to check that we still use some-
thing similar to a normal distribution; picture!)

• Upload sound samples of the different algorithms to a server and link
to them.

5.2 Experimental Evaluation

6 Conclusion

What is the best algorithm and why?

5


