diff options
author | André Nusser <andre.nusser@googlemail.com> | 2019-03-16 17:30:08 +0100 |
---|---|---|
committer | André Nusser <andre.nusser@googlemail.com> | 2019-05-11 14:54:51 +0200 |
commit | 50b011c4740a5ec5338903b1d8b5fbb4b42f3df3 (patch) | |
tree | 3dcbe828b627c34cdba06818ecdd109160f5eeff /src | |
parent | 61f443f24ce9f9a99d78cea70a53654716d1f8fb (diff) |
Variable renaming.
Diffstat (limited to 'src')
-rw-r--r-- | src/sample_selection.cc | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/src/sample_selection.cc b/src/sample_selection.cc index 012888d..6e956df 100644 --- a/src/sample_selection.cc +++ b/src/sample_selection.cc @@ -176,17 +176,17 @@ const Sample* SampleSelection::getObjective(level_t level, std::size_t pos) DEBUG(rand, "level: %f, lvl: %f (mean: %.2f, stddev: %.2f," "power_min: %f, power_max: %f)\n", level, lvl, mean, stddev, power_min, power_max); - float alpha = 2.0; - float beta = 1.0; - float gamma = .05; + const float f_distance = 2.0; + const float f_recent = 1.0; + const float f_random = .05; // start with most promising power value and then stop when reaching far values // which cannot become opt anymore auto closest_it = std::lower_bound(samples.begin(), samples.end(), lvl); std::size_t up_index = std::distance(samples.begin(), closest_it); std::size_t down_index = (up_index == 0 ? 0 : up_index - 1); - float up_value_lb = (up_index < samples.size() ? alpha*pow2(samples[up_index].power-lvl) : std::numeric_limits<float>::max()); - float down_value_lb = (up_index != 0 ? alpha*pow2(samples[down_index].power-lvl) : std::numeric_limits<float>::max()); + float up_value_lb = (up_index < samples.size() ? f_distance*pow2(samples[up_index].power-lvl) : std::numeric_limits<float>::max()); + float down_value_lb = (up_index != 0 ? f_distance*pow2(samples[down_index].power-lvl) : std::numeric_limits<float>::max()); std::size_t count = 0; do @@ -198,7 +198,7 @@ const Sample* SampleSelection::getObjective(level_t level, std::size_t pos) if (up_index != samples.size()-1) { ++up_index; - up_value_lb = alpha*pow2(samples[up_index].power-lvl); + up_value_lb = f_distance*pow2(samples[up_index].power-lvl); } else { @@ -211,7 +211,7 @@ const Sample* SampleSelection::getObjective(level_t level, std::size_t pos) if (down_index != 0) { --down_index; - down_value_lb = alpha*pow2(samples[down_index].power-lvl); + down_value_lb = f_distance*pow2(samples[down_index].power-lvl); } else { @@ -222,7 +222,7 @@ const Sample* SampleSelection::getObjective(level_t level, std::size_t pos) auto random = rand.floatInRange(0.,1.); auto distance = samples[current_index].power - lvl; auto recent = (float)settings.samplerate/std::max<std::size_t>(pos - last[current_index], 1); - auto value = alpha*pow2(distance) + beta*pow2(recent) + gamma*random; + auto value = f_distance*pow2(distance) + f_recent*pow2(recent) + f_random*random; if (value < value_opt) { |