/* -*- Mode: c++ -*- */ /*************************************************************************** * sample_selection.h * * Mon Mar 4 23:58:12 CET 2019 * Copyright 2019 André Nusser * andre.nusser@googlemail.com ****************************************************************************/ /* * This file is part of DrumGizmo. * * DrumGizmo is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * DrumGizmo is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with DrumGizmo; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include "sample_selection.h" #include <hugin.hpp> #include "powerlist.h" #include "random.h" #include "settings.h" #include <algorithm> namespace { // Minimum sample set size. // Smaller means wider 'velocity groups'. // Limited by sample set size, ie. only kicks in if sample set size is smaller // than this number. std::size_t const MIN_SAMPLE_SET_SIZE = 26u; float pow2(float f) { return f*f; } } // end anonymous namespace SampleSelection::SampleSelection(Settings& settings, Random& rand, const PowerList& powerlist) : settings(settings), rand(rand), powerlist(powerlist), alg(SelectionAlg::Objective) { } void SampleSelection::setSelectionAlg(SelectionAlg alg) { this->alg = alg; } void SampleSelection::finalise() { last.assign(powerlist.getPowerListItems().size(), 0); } const Sample* SampleSelection::get(level_t level, std::size_t pos) { // TODO: switch objective to default at some point switch (alg) { case SelectionAlg::Objective: return getObjective(level, pos); break; case SelectionAlg::Old: default: return getOld(level, pos); } } // FIXME: remove before release and adapt everything const Sample* SampleSelection::getOld(level_t level, std::size_t pos) { auto velocity_stddev = settings.velocity_stddev.load(); const auto& samples = powerlist.getPowerListItems(); if(!samples.size()) { return nullptr; // No samples to choose from. } int retry = settings.sample_selection_retry_count.load(); Sample* sample{nullptr}; auto power_max = powerlist.getMaxPower(); auto power_min = powerlist.getMinPower(); float power_span = power_max - power_min; // Width is limited to at least 10. Fixes problem with instrument with a // sample set smaller than MIN_SAMPLE_SET_SIZE. float width = std::max(samples.size(), MIN_SAMPLE_SET_SIZE); // Spread out at most ~2 samples away from center if all samples have a // uniform distribution over the power spectrum (which they probably don't). float mean_stepwidth = power_span / width; // Cut off mean value with stddev/2 in both ends in order to make room for // downwards expansion on velocity 0 and upwards expansion on velocity 1. float mean = level * (power_span - mean_stepwidth) + (mean_stepwidth / 2.0); float stddev = velocity_stddev * mean_stepwidth; std::size_t index{0}; float power{0.f}; // note: loop is executed once + #retry do { --retry; // Select normal distributed value between // (stddev/2) and (power_span-stddev/2) float lvl = rand.normalDistribution(mean, stddev); // Adjust this value to be in range // (power_min+stddev/2) and (power_max-stddev/2) lvl += power_min; DEBUG(rand, "level: %f, lvl: %f (mean: %.2f, stddev: %.2f, mean_stepwidth: %f, power_min: %f, power_max: %f)\n", level, lvl, mean, stddev, mean_stepwidth, power_min, power_max); for (std::size_t i = 0; i < samples.size(); ++i) { auto const& item = samples[i]; if (sample == nullptr || std::fabs(item.power - lvl) < std::fabs(power - lvl)) { sample = item.sample; index = i; power = item.power; } } } while (lastsample == sample && retry >= 0); DEBUG(rand, "Chose sample with index: %d, power %f", (int)index, power); lastsample = sample; return sample; } const Sample* SampleSelection::getObjective(level_t level, std::size_t pos) { const auto& samples = powerlist.getPowerListItems(); if(!samples.size()) { return nullptr; // No samples to choose from. } auto power_max = powerlist.getMaxPower(); auto power_min = powerlist.getMinPower(); float power_span = power_max - power_min; float mean = level - .5f/127.f; // XXX: this should actually be done when reading the events float stddev = settings.enable_velocity_modifier.load() ? settings.velocity_stddev.load()/127.0f : 0.; float lvl = power_min + rand.normalDistribution(mean, stddev)*power_span; std::size_t index_opt = 0; float power_opt{0.f}; float value_opt{std::numeric_limits<float>::max()}; // the following three values are mostly for debugging float random_opt = 0.; float distance_opt = 0.; float recent_opt = 0.; DEBUG(rand, "level: %f, lvl: %f (mean: %.2f, stddev: %.2f," "power_min: %f, power_max: %f)\n", level, lvl, mean, stddev, power_min, power_max); const float f_distance = settings.sample_selection_f_distance.load(); const float f_recent = settings.sample_selection_f_recent.load(); const float f_random = settings.sample_selection_f_random.load(); // start with most promising power value and then stop when reaching far values // which cannot become opt anymore auto closest_it = std::lower_bound(samples.begin(), samples.end(), lvl); std::size_t up_index = std::distance(samples.begin(), closest_it); std::size_t down_index = (up_index == 0 ? 0 : up_index - 1); float up_value_lb = (up_index < samples.size() ? f_distance*pow2(samples[up_index].power-lvl) : std::numeric_limits<float>::max()); float down_value_lb = (up_index != 0 ? f_distance*pow2(samples[down_index].power-lvl) : std::numeric_limits<float>::max()); std::size_t count = 0; do { std::size_t current_index; if (up_value_lb < down_value_lb) { current_index = up_index; if (up_index != samples.size()-1) { ++up_index; up_value_lb = f_distance*pow2(samples[up_index].power-lvl); } else { up_value_lb = std::numeric_limits<float>::max(); } } else { current_index = down_index; if (down_index != 0) { --down_index; down_value_lb = f_distance*pow2(samples[down_index].power-lvl); } else { down_value_lb = std::numeric_limits<float>::max(); } } auto random = rand.floatInRange(0.,1.); auto distance = samples[current_index].power - lvl; auto recent = (float)settings.samplerate/std::max<std::size_t>(pos - last[current_index], 1); auto value = f_distance*pow2(distance) + f_recent*pow2(recent) + f_random*random; if (value < value_opt) { index_opt = current_index; power_opt = samples[current_index].power; value_opt = value; random_opt = random; distance_opt = distance; recent_opt = recent; } ++count; } while (up_value_lb <= value_opt || down_value_lb <= value_opt); DEBUG(rand, "Chose sample with index: %d, value: %f, power %f, random: %f, distance: %f, recent: %f, count: %d", (int)index_opt, value_opt, power_opt, random_opt, distance_opt, recent_opt, (int)count); last[index_opt] = pos; return samples[index_opt].sample; }