1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
/* -*- Mode: c++ -*- */
/***************************************************************************
* powermap.cc
*
* Fri Apr 17 23:06:12 CEST 2020
* Copyright 2020 André Nusser
* andre.nusser@googlemail.com
****************************************************************************/
/*
* This file is part of DrumGizmo.
*
* DrumGizmo is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* DrumGizmo is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with DrumGizmo; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
#include "powermap.h"
#include <cassert>
#include <cmath>
namespace
{
using Power = Powermap::Power;
using PowerPair = Powermap::PowerPair;
Power h00(Power x) { return (1+2*x)*pow(1-x,2); }
Power h10(Power x) { return x*pow(1-x,2); }
Power h01(Power x) { return x*x*(3-2*x); }
Power h11(Power x) { return x*x*(x-1); }
Power computeValue(
Power const x, PowerPair const& P0, PowerPair const& P1, Power const m0, Power const m1)
{
auto const x0 = P0.in;
auto const x1 = P1.in;
auto const y0 = P0.out;
auto const y1 = P1.out;
auto const dx = x1 - x0;
auto const x_prime = (x - x0)/dx;
return h00(x_prime)*y0 + h10(x_prime)*dx*m0 + h01(x_prime)*y1 + h11(x_prime)*dx*m1;
}
} // end anonymous namespace
Powermap::Powermap()
{
reset();
}
Power Powermap::map(Power in)
{
assert(in >= 0. && in <= 1.);
if (spline_needs_update) {
updateSpline();
}
Power out;
if (in < fixed[0].in) {
out = shelf ? fixed[0].out : computeValue(in, {0.,0.}, fixed[0], m[0], m[1]);
}
else if (in < fixed[1].in) {
out = computeValue(in, fixed[0], fixed[1], m[1], m[2]);
}
else if (in < fixed[2].in) {
out = computeValue(in, fixed[1], fixed[2], m[2], m[3]);
}
else { // in >= fixed[2].in
out = shelf ? fixed[2].out : computeValue(in, fixed[2], {1.,1.}, m[3], m[4]);
}
assert(out >= 0. && out <= 1.);
return out;
}
void Powermap::reset()
{
setFixed0({eps, eps});
setFixed1({.5, .5});
setFixed2({1-eps, 1-eps});
// FIXME: better false?
shelf = true;
updateSpline();
}
void Powermap::setFixed0(PowerPair new_value)
{
if (fixed[0] != new_value) {
spline_needs_update = true;
fixed[0].in = clamp(new_value.in, eps, fixed[1].in-eps);
fixed[0].out = clamp(new_value.out, eps, fixed[1].out-eps);
}
}
void Powermap::setFixed1(PowerPair new_value)
{
if (fixed[1] != new_value) {
spline_needs_update = true;
fixed[1].in = clamp(new_value.in, fixed[0].in+eps, fixed[2].in-eps);
fixed[1].out = clamp(new_value.out, fixed[0].out+eps, fixed[2].out-eps);
}
}
void Powermap::setFixed2(PowerPair new_value)
{
if (fixed[2] != new_value) {
spline_needs_update = true;
fixed[2].in = clamp(new_value.in, fixed[1].in+eps, 1-eps);
fixed[2].out = clamp(new_value.out, fixed[1].out+eps, 1-eps);
}
}
void Powermap::setShelf(bool enable)
{
if (shelf != enable) {
spline_needs_update = true;
this->shelf = enable;
}
}
PowerPair Powermap::getFixed0() const
{
return fixed[0];
}
PowerPair Powermap::getFixed1() const
{
return fixed[1];
}
PowerPair Powermap::getFixed2() const
{
return fixed[2];
}
// This mostly followes the wikipedia article for monotone cubic splines:
// https://en.wikipedia.org/wiki/Monotone_cubic_interpolation
void Powermap::updateSpline()
{
assert(0. <= fixed[0].in && fixed[0].in < fixed[1].in &&
fixed[1].in < fixed[2].in && fixed[2].in <= 1.);
assert(0. <= fixed[0].out && fixed[0].out <= fixed[1].out &&
fixed[1].out <= fixed[2].out && fixed[2].out <= 1.);
// TODO: What to do if fixed[0] is (0,0) or fixed[2] is (1,1)??
Powers X = shelf ? Powers{fixed[0].in, fixed[1].in, fixed[2].in}
: Powers{0., fixed[0].in, fixed[1].in, fixed[2].in, 1.};
Powers P = shelf ? Powers{fixed[0].out, fixed[1].out, fixed[2].out}
: Powers{0., fixed[0].out, fixed[1].out, fixed[2].out, 1.};
Powers deltas(X.size()-1);
Powers m(X.size());
// 1
for (std::size_t i = 0; i < deltas.size(); ++i) {
deltas[i] = (P[i+1]-P[i])/(X[i+1]-X[i]);
}
// 2
m[0] = deltas[0];
for (std::size_t i = 1; i < deltas.size(); ++i) {
m[i] = (deltas[i-1] + deltas[i])/2.;
}
m.back() = deltas.back();
// 3
std::vector<bool> ignore(deltas.size(), false);
for (std::size_t i = 0; i < deltas.size(); ++i) {
if (deltas[i] == 0) {
m[i] = 0;
m[i+1] = 0;
ignore[i] = true;
}
}
for (std::size_t i = 0; i < deltas.size(); ++i) {
if (ignore[i]) {
continue;
}
// 4
auto alpha = m[i]/deltas[i];
auto beta = m[i+1]/deltas[i];
assert(alpha >= 0.);
assert(beta >= 0.);
// 5
// TODO: expose this parameter for testing both
bool const option1 = false;
if (option1) {
if (alpha > 3 || beta > 3) {
m[i] = 3*deltas[i];
}
}
else {
auto const a2b2 = alpha*alpha + beta*beta;
if (a2b2 > 9) {
auto const tau = 3./sqrt(a2b2);
m[i] = tau*alpha*deltas[i];
m[i+1] = tau*alpha*deltas[i];
}
}
}
if (shelf) {
assert(m.size() == 3);
this->m[1] = m[0];
this->m[2] = m[1];
this->m[3] = m[2];
}
else {
assert(m.size() == 5);
for (std::size_t i = 0; i < m.size(); ++i) {
this->m[i] = m[i];
}
}
spline_needs_update = false;
}
Power Powermap::clamp(Power in, Power min, Power max) const
{
return std::max(min, std::min(in, max));
}
|