diff options
| -rw-r--r-- | tests/test_xpath_operators.cpp | 48 | 
1 files changed, 48 insertions, 0 deletions
| diff --git a/tests/test_xpath_operators.cpp b/tests/test_xpath_operators.cpp index c028224..57e3755 100644 --- a/tests/test_xpath_operators.cpp +++ b/tests/test_xpath_operators.cpp @@ -481,4 +481,52 @@ TEST(xpath_operators_associativity_arithmetic)  	CHECK_XPATH_NUMBER(c, STR("1-1+1"), 1);  } +TEST(xpath_operators_mod) +{ +	// Check that mod operator conforms to Java spec (since this is the only concrete source of information about XPath mod) +	xml_node c; + +	// Basic tests from spec +	CHECK_XPATH_NUMBER(c, STR("5 mod 3"), 2); +	CHECK_XPATH_NUMBER(c, STR("5 mod -3"), 2); +	CHECK_XPATH_NUMBER(c, STR("-5 mod 3"), -2); +	CHECK_XPATH_NUMBER(c, STR("-5 mod -3"), -2); + +	// If either operand is NaN, the result is NaN +	CHECK_XPATH_NUMBER_NAN(c, STR("(0 div 0) mod 3")); +	CHECK_XPATH_NUMBER_NAN(c, STR("3 mod (0 div 0)")); +	CHECK_XPATH_NUMBER_NAN(c, STR("(0 div 0) mod (0 div 0)")); + +	// If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN +	CHECK_XPATH_NUMBER_NAN(c, STR("(1 div 0) mod 3")); +	CHECK_XPATH_NUMBER_NAN(c, STR("(1 div 0) mod -3")); +	CHECK_XPATH_NUMBER_NAN(c, STR("(-1 div 0) mod 3")); +	CHECK_XPATH_NUMBER_NAN(c, STR("1 mod 0")); +	CHECK_XPATH_NUMBER_NAN(c, STR("-1 mod 0")); +	CHECK_XPATH_NUMBER_NAN(c, STR("(1 div 0) mod 0")); +	CHECK_XPATH_NUMBER_NAN(c, STR("(-1 div 0) mod 0")); + +	// If the dividend is finite and the divisor is an infinity, the result equals the dividend +	CHECK_XPATH_NUMBER(c, STR("1 mod (1 div 0)"), 1); +	CHECK_XPATH_NUMBER(c, STR("1 mod (-1 div 0)"), 1); +	CHECK_XPATH_NUMBER(c, STR("-1 mod (1 div 0)"), -1); +	CHECK_XPATH_NUMBER(c, STR("0 mod (1 div 0)"), 0); +	CHECK_XPATH_NUMBER(c, STR("0 mod (-1 div 0)"), 0); +	CHECK_XPATH_NUMBER(c, STR("100000 mod (1 div 0)"), 100000); + +	// If the dividend is a zero and the divisor is finite, the result equals the dividend. +	CHECK_XPATH_NUMBER(c, STR("0 mod 1000000"), 0); +	CHECK_XPATH_NUMBER(c, STR("0 mod -1000000"), 0); + +	// In the remaining cases ...  the floating-point remainder r from the division of a dividend n by a divisor d +	// is defined by the mathematical relation r = n - (d * q) where q is an integer that is negative only if n/d is +	// negative and positive only if n/d is positive, and whose magnitude is as large as possible without exceeding the magnitude of the true +	// mathematical quotient of n and d. +	CHECK_XPATH_NUMBER(c, STR("9007199254740991 mod 2"), 1); +	CHECK_XPATH_NUMBER(c, STR("9007199254740991 mod 3"), 1); +	CHECK_XPATH_NUMBER(c, STR("18446744073709551615 mod 2"), 0); +	CHECK_XPATH_NUMBER(c, STR("18446744073709551615 mod 3"), 1); +	CHECK_XPATH_NUMBER(c, STR("115792089237316195423570985008687907853269984665640564039457584007913129639935 mod 2"), 0); +	CHECK_XPATH_NUMBER(c, STR("115792089237316195423570985008687907853269984665640564039457584007913129639935 mod 3"), 1); +}  #endif | 
